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Abstract. Thoracic ultrasound can provide information leading to rapid diagno-
sis of pneumothorax with improved accuracy over the standard physical examina-
tion and with higher sensitivity than anteroposterior chest radiography. However,
the clinical interpretation of a patient medical image is highly operator depen-
dent. Furthermore, remote environments, such as the battlefield or deep-space
exploration, may lack expertise for diagnosing certain pathologies. We have de-
veloped an automated image interpretation pipeline for the analysis of thoracic
ultrasound data and the classification of pneumothorax events to provide deci-
sion support in such situations. Our pipeline consists of image preprocessing,
data augmentation, and deep learning architectures for medical diagnosis. In this
work, we demonstrate that robust, accurate interpretation of chest images and
video can be achieved using deep neural networks. A number of novel image
processing techniques were employed to achieve this result. Affine transforma-
tions were applied for data augmentation. Hyperparameters were optimized for
learning rate, dropout regularization, batch size, and epoch iteration by a sequen-
tial model-based Bayesian approach. In addition, we utilized pretrained archi-
tectures, applying transfer learning and fine-tuning techniques to fully connected
layers. Our pipeline yielded binary classification validation accuracies of 98.3%
for M-mode images and 99.8% with B-mode video frames.
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1 Motivation

Thoracic ultrasound is a noninvasive, readily-available imaging modality that supple-
ments clinical examination in the evaluation of chest pathologies involving the pleu-
ral cavity [6]. In particular, radiologists have identified multiple sonographic artifacts
indicative of pneumothorax (PTX), such as sliding lung absence, reverberation, bar
code pattern and transition point presence [1, 7]. The expertise available for diagno-
sis and treatment of PTX may be curtailed in austere or remote locations, such as the
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battlefield or aboard a deep space exploration vehicle. Due to the limited resources
in these environments, artificial intelligence can play a significant role in augmenting
clinically-relevant and interpretable medical patient diagnosis. A common occurrence
on the battlefield is penetrating or blunt force thoracic injury that impairs the airways
and may induce collapsed lung. Although PTX pathology is rare among astronauts,
acute hypobaric decompression exposure is a plausible risk factor in microgravity and
would present a significant challenge in both diagnosis and immediate treatment. There-
fore, reliable interpretation capability for this life threatening condition is imperative for
celeritous intervention. We hypothesized that machine learning can be used for accu-
rate, early diagnosis of PTX in traumatic injuries, and accordingly developed an ultra-
sound medical imaging platform for thoracic pulmonary injury diagnosis. The objective
of this study was to build and assess an automated computer model that provides near
real-time binary PTX diagnosis of porcine pulmonary ultrasound images. The model’s
effectiveness was quantified by analyzing performance metrics on the train, validation
and test sets.

An intelligent clinical decision support system is a powerful tool that aids clinical
management of patient care and treatment for potentially life-threatening injuries as
well as evaluating affected areas following medical procedures. Machine learning algo-
rithms trained to distinguish pulmonary feature signs indicative of PTX were developed
and examined. These algorithms, when applied to previously unseen test images, exhib-
ited relatively high statistical performance metrics of sensitivity, specificity and positive
predictive value. Our foremost algorithm is equipped to work with sonographic M-mode
images and B-mode video frames of normal and pathological pulmonary function.

2 Dataset

Porcine clinical ultrasound data sources of pulmonary health were supplied by the US
Army Institute of Surgical Research. Ground truth categorical binary labels for PTX
pathology associated with 404 M-mode (209 bmp, 195 jpg) images and 420 B-mode
mp4 video clips were provided to build automated medical diagnosis models. Baseline
classification accuracy statistics as computed by the iFAST computerized assistant were
97.5% for M-mode images and 84.7% for B-mode video [8]. A Sonosite M-Turbo
ultrasound machine captured all images and video loops. Cine-videos were 5 seconds
in duration with a frequency of 40 frames per second. The associated linear transducer
monitored intercostal space 2 for each subject and acquired images utilizing settings:
mechanical index 0.7, probe depth 4cm, and soft tissue thermal index 0.1.

3 Methods

In recent years, deep learning has become a topic of much discussion and research due
to its impressive pattern recognition discernment on large multi-class data sets, such as
ImageNet. Transfer learning has mitigated computation time, improved accuracy and
enhanced development of robust deep learning models. Consequently, computer-aided
diagnosis via deep learning is now feasible, despite a lack of large medical database
prevalence. We have developed a complete software pipeline for the medical diagnosis



of PTX cases from ultrasound image products using convolutional neural networks. In
addition to transfer learning, we have utilized various image preprocessing techniques,
data augmentation, fine-tuning, and Bayesian optimization.

3.1 Data Retrieval

A total of 420 B-mode videos and 404 M-mode still images from eight female Yorkshire
porcine models (Sus scrofa) with and without PTX, used in a previous study [8], were
acquired for our experiments. The images were then split into 80% train and 20% test
sets.

3.2 Preprocessing

Ultrasound images and videos contain artifacts, such as text, lines, tick marks and gran-
ular speckle noise. Such manifestations are detrimental for accurate image classifica-
tion; thus, we developed a digital image processing module to filter such uninformative
structures from the ultrasound data prior to developing a learning model. Fig. 1 illus-
trates steps taken to properly clean the medical images.

Fig. 1: Image preprocessing pipeline module component.

The initial step involved removing image frame background structures. This was
accomplished by thresholding the image after histogram equalization was performed.
The threshold was determined based on the histogram of intensity values taken from the
histogram equalized image. Subsequently, morphological opening, closing, and hole-
filling were employed in order to separate neighboring structures and to ensure complete
capture of relevant structures. After this was accomplished, we sought to blend vertical
line artifacts into the data. Vertical lines were localized using the x-direction Sobel filter.
The line pixels were then replaced with neighboring image pixels and finally smoothed
with a Gaussian filter.



3.3 Data Augmentation

The data augmentation module increased the number of images using affine transfor-
mations to improve network localization capability and generalized modeling. Aug-
mentation of images that preserve collinearity and distance ratios was performed prior
to model training. Each transform resulted in one additional output generated per image
with arguments determining type of augmentation. Flips (horizontal, vertical), angled
rotations, translational pixel shifts, regional zoom, random Gaussian noise and blur-
ring by various amounts were implemented. Categorical parity was achieved by supple-
menting with a 3:1 ratio of negative to positive M-mode generated images. Our module
extracted a 1.7:1 ratio of negative to positive frames from B-mode video to reach la-
bel parity. Finally, contrast-limited adaptive histogram equalization was applied to all
images and frames for enhanced detection of subtle features.

3.4 CNN Architecture

Pretrained convolutional neural networks (CNN) are models that have been trained us-
ing a large dataset, e.g. ImageNet contains one million images with over a thousand cat-
egories. The resulting weighted connections from such a pretrained CNN were utilized
to accelerate and transfer learned features with activations available in the penultimate
fully connected layer. This particular layer was trained with our porcine dataset for the
canonical case. Several deep neural network models were examined to determine op-
timal architecture for our application. A 16-layers deep model developed by Oxford
University’s Visual Geometry Group (VGG16) consistently recorded higher diagnostic
accuracy than alternative architectures examined. The network consists of 3× 3 convo-
lutional layers stacked in increasing depth while reducing volume size by max pooling.
Then two fully connected layers, each with 4, 096 nodes, are followed by a softmax
classifier. Increased convolution layers and improved utilization of internal network
computing resources allow the network to learn deeper features. For example, the first
layer might learn only edges while the deepest layer learns to interpret transition pat-
terns differentiating movement at the pleural lines, such as seashore sign, a normal lung
feature. The network contains convolution blocks with activation on the top layer that
defines complex functional mappings between inputs and response variables, followed
by batch normalization after each convolutional layer.

The max pooling sample-based discretization process was performed with kernel
size 3 × 3 and stride 2. The network was then flattened to one dimension after the
final convolutional block. Dropout of network layers was performed until reaching the
dense five node output layer, which uses a softmax activation function to compute the
probability of classification labels. Exponential and leaky rectified linear unit activation
was applied with gradient value 0.01 to mitigate dead neuron bottlenecks during back-
propagation. The network also used convolutional layer L2 regularization to reduce
model overfitting, binary cross-entropy computed error loss, and the Xavier method for
initializing weights so that neuron activation functions begin in unsaturated regions. The
inclusion of batch normalization improved validation set PTX classification accuracy on
average 1.6% across both model modes.



3.5 Transfer Learning

Transfer learning based approaches were executed using VGG19, ResNet50 and VGG16
architectures pretrained with weights updated based on ImageNet visual database train-
ing. In order to achieve the transfer learning scenario, the last fully connected layer
was removed followed by treating the remaining network components as a fixed feature
extractor for the new train dataset [5]. The technique retains initial pretrained model
weights and extracts image features via a final network layer. Additionally, further
"fine-tuning" experiments were performed by extending backpropagation to the last
four layers. Due to overfitting concerns, only four higher-level layer dimensions of the
network were fine-tuned. Our experiments revealed that fine-tuning yielded improved
performance over transfer learning alone.

3.6 Bayesian Optimization

A deep neural network’s effectiveness is influenced by “higher-level” prior distribution
properties of the model, such as complexity and learning rate. The optimal selection of
these hyperparameters can be framed as a model validation loss minimization problem.
Bayesian optimization is a probabilistic model-based approach for finding the minimum
of any objective function that returns a real-value metric, such as CNN validation error
with respect to hundreds of model architectures and hyperparameter choices. The ap-
proach has been applied to feed-forward computer vision models with greater efficiency
than manual, random, or grid search in terms of better overall test set performance and
decreased optimization time [3]. In our experiments, we optimized dropout rate, learn-

Fig. 2: Parallel coordinate multivariate visualization example across 7 dimensions for VGG16
model. Optimized configuration occurs at data cluster points: batch_size=71, drpout=0.0,
n_epochs=100, (accuracy) values=0.97, decay_rt=1.0, lrt=1e-05, decay_steps=0.05.

ing rate, decay rate, batch size, training epochs, and decay step size hyperparameters
using the GPyOpt Python open-source library package [2].

After defining a search space for the optimization process, a posterior distribution
function that best describes the objective function to optimize was constructed. As the
number of observations grows, the posterior distribution improves and the algorithm



becomes more certain of which regions in parameter space are worth exploring (see
Fig. 2). A Gaussian process model with integrated expected improvement acquisition
was used and initially explored 10 random points for the first model fit. This number
was double the default value, but necessary since we are explored a complex and noisy
7 dimensional hyperparameter space. Consequently, the Gaussian process model fit re-
quired more time using CPU resources to complete than building and optimizing the
neural network with a single GPU. Moreover, sampling many random points initially
ameliorates the risk of becoming trapped in a local minima. The model explored a max-
imum of 100 points following the initial parameter sampling results (see Table 1).

M-mode Gaussian Process Hyperparameter Optimization
Pretrained
Model

Dropout Learning
Rate

Decay
Rate

Batch
Size

Epochs Loss Accuracy Solver

VGG16 0.2825 1.00e-03 0.9500 16 100 0.0886 0.9700 SGD
VGG16 0.2455 9.13e-04 0.8507 32 50 0.0534 0.9743 Adam
VGG16 0.3819 3.27e-04 0.6191 16 30 0.0654 0.9764 RMSProp
VGG19 0.1370 1.00e-03 0.9250 16 20 0.1486 0.9422 SGD
VGG19 0.0933 2.04e-04 0.5969 16 20 0.1045 0.9672 Adam
VGG19 0.5960 7.50e-04 0.8100 16 100 0.1106 0.9759 RMSProp
ResNet50 0.2790 9.89e-04 0.9782 32 100 0.4837 0.7195 SGD
ResNet50 0.0640 1.00e-03 0.8750 128 50 0.3077 0.8608 Adam
ResNet50 0.5789 6.59e-04 0.8640 16 50 0.3790 0.8051 RMSProp

B-mode Gaussian Process Hyperparameter Optimization
Pretrained
Model

Dropout Learning
Rate

Decay
Rate

Batch
Size

Epochs Loss Accuracy Solver

VGG16 0.3335 5.56e-04 0.4474 16 30 0.4450 0.8057 SGD
VGG16 0.2708 2.14e-04 0.9431 64 20 0.0313 0.9903 Adam
VGG16 0.5313 1.73e-04 0.9474 32 20 0.0437 0.9844 RMSProp
VGG19 0.0000 9.72e-04 1.0000 32 50 0.1861 0.9296 SGD
VGG19 0.0492 1.60e-04 0.7151 16 20 0.0717 0.9778 Adam
VGG19 0.4488 2.47e-04 0.9895 64 20 0.0588 0.9749 RMSProp
ResNet50 0.5427 1.00e-03 0.7377 64 20 0.6706 0.6311 SGD
ResNet50 0.7102 2.70e-04 0.9366 64 100 0.4778 0.7464 Adam
ResNet50 0.6979 2.22e-04 0.9591 32 30 0.4743 0.7561 RMSProp

Table 1: Gaussian process Bayesian optimization results for 3 evaluated models. Dataset labels
were negative (normal lung) and positive (PTX). VGG16 models with stochastic gradient descent
solvers (yellow highlight) produced the highest optimized accuracy.

4 Experiments and Results

4.1 Model Generation

The acquired medical imaging data products were partitioned into train, validation and
test sets based using manifest supplied ground truth information. Train and validation
sets were augmented using affine transformations that created synthetic images. The M-
mode data partitioning resulted in 1, 868 train images, 467 validation images, and 81
images for test. B-mode video was partitioned as 16, 212 train frames, 4, 053 validation
frames, and 1, 013 images for test. The held-out test subsets were disjoint and analyzed
only once by the trained models. The images were cropped to area size 224 × 224
and used as input data by a VGG16 architecture previously trained for generic clas-
sification tasks on Imagenet visual database. The model was then implemented with a
high-level neural network API called Keras, running on the TensorFlow library backend
for numerical computation using data flow graphs. An NVIDIA Tesla K80 accelerator
hardware device with 12 GiB of GPU memory powered the training and a form of early
stopping influenced estimation of optimal test set model epoch. Successive iterations
guided construction of more complex model architectures fine-tuned for improved di-
agnostic interpretation of our pulmonary sonographic datasets.



4.2 Binary model classification

Three candidate model architectures were evaluated as binary diagnostic classifiers us-
ing porcine PTX medical images. The model validation performance was compared
with baseline iFAST logistic regression classifier statistics. The VGG16 model achieved
the best overall prediction accuracy. iFAST baseline statistical parameter results were
outperformed for both M-mode images and B-mode video frames. Previously discussed
image preprocessing, data augmentation, hyperparameter optimization and transfer learn-
ing techniques were used as a pipeline process for model generation. The results suc-
cessfully achieved published state-of-the-art accuracy levels (see Table 2).

Validation Data Set Statistics
Modality Model Accuracy 95% CI Sensitivity Specificity PPV NPV Kappa
B-mode VGG16 0.9978 (0.9958, 0.9999) 0.9990 0.9965 0.9966 0.9990 0.9956
B-mode iFAST 0.8465 (0.8076, 0.8803) 0.8566 0.8258 0.9102 0.7365 0.6617
M-mode VGG16 0.9829 (0.9665, 0.9926) 0.9957 0.9701 0.9707 0.9956 0.9657
M-mode iFAST 0.9753 (0.9551, 0.9881) 0.9818 0.9618 0.9818 0.9618 0.9436

Table 2: B-mode: 4053 frames, 2028 true positives, 2 false negatives, 7 false posi-
tives, 2016 true negatives. M-mode: 467 images, 232 true positives, 1 false negative,
7 false positives, 227 true negatives.

5 Discussion and Future Directions

The VGG16 CNN models recorded a higher ratio of false positives to false negatives
for both ultrasound modalities. Lichtenstein found that absence of lung sliding alone is
very sensitive for PTX, but not specific in ICU patients due to large numbers of false
positives [4]. Porcine subjects that are critically ill or exhibiting pulmonary contusions
may cause similar interference and plausibly explain the observation.

There are multiple directions that can be pursued to improve upon our results. Cur-
rently, several image processing techniques for contrast enhancement are being evalu-
ated with the intent of improving precision and medical imaging feature discrimination.
Our dataset was class imbalanced, a characteristic that negatively affects CNN classifier
accuracy. Consequently, we plan to assess generative adversarial networks as an aug-
mentation tool for restoring categorical parity and supplying images of superior quality.
Our classifiers achieved 100% accuracy on test set images for both ultrasound modal-
ities. However, more rigorous analysis of the models with larger datasets including
human pulmonary structures is necessary and scheduled as a future activity.

6 Conclusion

In this paper we presented a fully automatic processing pipeline of thoracic ultrasound
for PTX pathology classification. Data retrieval and preprocessing modules acquired ul-
trasound image products, removed artifacts and employed adaptive histogram equaliza-
tion for improved image contrast. An initial sparse dataset was synthetically enhanced



with pathology-preserving affine image transformations. Pretrained model weight uti-
lization together with retraining selected fully connected layers improved generalizabil-
ity and accelerated training time for PTX feature learning. Error analysis revealed that
learning rate, optimizer type and image preprocessing were the greatest contributors to
overall improved pipeline processing element performance. Bayesian optimization de-
termined an optimal hyperparameter model configuration which outperformed random
search according to our experiments.
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